If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5z^2+16z-16=0
a = 5; b = 16; c = -16;
Δ = b2-4ac
Δ = 162-4·5·(-16)
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-24}{2*5}=\frac{-40}{10} =-4 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+24}{2*5}=\frac{8}{10} =4/5 $
| 2x-9(8x+27)=21 | | 7/4m-5/6=3/5m+25 | | x=4x+4x+5x+9 | | 4x+1+4x-3=102 | | 5=20-x | | 5^y=50 | | 4(x-10)=-52 | | 12x+16x-9-13=90 | | .5x+3.4=2.6-3.4x | | 28x=122 | | 4x+27=3x+38 | | x+18=3x-4 | | 7x+3=-8x-5 | | 4x+5+100+35=180 | | 30=-4s^2+40s+8 | | 2x+14=4x-14 | | 2x/7=45 | | 5x+28=3x+38 | | 45+115+6x-10=180 | | 1+6x=5x+9 | | x-5+7x=19 | | 3x-7=3x-11 | | 0=4x(3x-15) | | 6x-10=122 | | 4x+6=174 | | 2a+17+8a–7= | | 3x-13=140 | | 2x+7=129 | | 2x+6=152 | | 2q+27=35 | | 2x-12=116 | | 5x-15=170 |